You can’t miss it!

Weekly. Free. Your Top 10 Sustainability & Energy Posts.

Your name

Your email

Your company

Your position

You can unsubscribe at any time (read our privacy policy.)

Join us

How Can We Ignite a Climate Technology Revolution?
How Can We Ignite a Climate Technology Revolution?
Wim Naudé
By Wim Naudé
Jul 14 2022 · 5 min read

Illuminem Voices
Sustainability · Climate Change · Carbon Removal

Climate technologies are ideas that are turned into innovations that will reduce and even eliminate greenhouse gas emissions and help us adapt to a changing climate. A climate technology revolution entails the invention and deployment of radically new — breakthrough — technologies to accomplish this, and not over the long run, but as soon as possible.

We have, and can make even more progress in reducing CO2 emissions, by incrementally improving and rolling out existing technologies. This is also largely the gist of the IPCC Sixth Assessment Report (AR6). The report contains an extensive discussion of the need for a systemic approach to innovation, invoking the concept of innovation systems to ensure the broadest adoption of emission reduction technologies.

However, the AR6 report also stresses that “aggressive action” is needed to limit global warming and that the window of opportunity to do so “is rapidly closing, and with it the opportunity to prevent the worst impacts of global warming.” The report thus stresses the necessity for moving beyond technologies that will only reduce greenhouse gas (GHG) emissions, but that will remove existing GHG stocks from the atmosphere. In particular, the report calls for further development of carbon dioxide removal (CDR) technologies, stating that “The deployment of CDR to counterbalance hard-to-abate residual emissions is unavoidable if net zero CO2 or GHG emissions are to be achieved” (IPCC AR6 2022: p.63).

While it does not state it explicitly, the IPCC AR6 is in essence a call for a climate technology revolution. Given the urgency of the matter — that we seem unlikely to limit global warming to the Paris Agreement target of 1.5 degrees centigrade above pre-industrial levels — and the dangers of crossing climate tipping points — the incentives to engineer the climate is indeed stacking up, as Scott Barrett in 2009 thought they would eventually do.

The question is: how can we ignite a climate technology revolution?

The current global approach, predominantly, is to view climate change as requiring an aggregate effort. Hence the UN’s Conference of Parties (COPs) approach using global climate conferences to galvanize support and commitment from national states through “Nationally Determined Contributions” (NDCs). Linked to this is the innovation system approach that attempts to percolate incremental technological innovations throughout the global economy, including various (unsynchronized) efforts at incentivizing further R&D in climate technologies through carbon price increases. Take for example the European Union’s Emissions Trading Scheme or the US’s ARPA-E innovation financing scheme.

While the aggregate effort approach is very necessary, and cannot be dispensed with, it suffers two potentially fatal flaws. First, it is very time-consuming. It is not the optimal way to best address a challenge where time is a critical factor. Svante Arrhenius warned in 1896 that human-induced carbon emissions would cause global warming; it took a century before the world adopted the Kyoto Protocol in 1997. Second, it is not very effective, being subject to coordination and governance failures, for a variety of reasons that Nobel Laureate Jean Tirole amongst others, stressed. Given a system of world governance based on nation-states with its roots in the 1648 Westphalian system, the collective action problem posed by climate change may be insurmountable. Indeed, Scott Barrett has rightly pointed out that “Climate change is probably the most difficult collective action problem in human history.” Unsurprisingly, following COP26 in Glasgow in 2021, Nature magazine reflected the exasperation of scientists with the heading “COP architects furious at lack of climate justice at pivotal summit.”

To ignite a climate technology revolution, we may need to complement the aggregate effort approach by a single best effort public good approach. This is a global public good that can be provided by a single country or group of countries (e.g., the EU). The concept of a single best effort can be illustrated with the example of a meteorite on a collision course with Earth. It is not necessary for every nation-state to try and come up with a technology to avert disaster. If the technologically most advanced country, or even the most advanced private firms, assume the responsibility to develop a technology that can divert the meteorite, it will provide a global public service — indeed a massive positive externality — to the whole world. The development of mRNA vaccines against the SARS-COV 2 virus is another example, where the single best efforts of only a few firms generated a breakthrough technology in a record time, and saved hundreds of millions of lives.

Single best efforts can, through utilising moonshot and mission-orientation approaches, and being complimented by science fiction prototyping, ignite a climate technology revolution. Note that such an approach is not suitable for all types of carbon emission-reducing and adaptation technologies, because many would need local adjustment and knowledge better suited to a decentralized approach. It is better suited for those technologies with general application — e.g. CDR or solar geoengineering.

Governments and private firms can lead single best efforts for such radical technologies. For example, the government of Japan launched several moonshot targets. And the richest entrepreneur in 2022, Elon Musk, has built his entire private business empire on radical technological revolutions. The X-Prize Foundation has just recently issued the largest incentive prize in history — offering US$100 million for carbon removal technology that can be scaled.

The challenges are, once the development of technologies are underway to successfully engineer and manage the climate, to ensure that its use and diffusion are appropriately governed, including better gauging, as well as measuring and minimizing the risk and rewards of geoengineering and its ethical dimensions. Although important and difficult, as the situations regarding artificial intelligence, or that of the equitable distribution of COVID-19 vaccines illustrate, this may still be less of a challenge than the collective action problem.

The IPCC has consistently since its inception in 1988 delivered reports stressing “the evidence is clear.” As a result, the world is moving in the right direction, but at a glacial pace. It may be time to heat up the race.

This article is also published on the author's blog. Energy Voices is a democratic space presenting the thoughts and opinions of leading Energy & Sustainability writers, their opinions do not necessarily represent those of illuminem.

Did you enjoy this energy voice? Support us by sharing this article!

Wim Naudé
About the author

Wim Naudé is professor in economics at University College Cork, Ireland, where he is affiliated to the Environmental Research Institute. He is also a visiting professor at RWTH Aachen University in Germany. His work is concerned with the role of technology, trade, and entrepreneurship in sustainable development.

Other Illuminem Voices

How To Spot “Mainstream” Climate Propaganda
Brad Zarnett
Brad Zarnett
Aug 11 2022
How To Spot “Mainstream” Climate Propaganda
It’s Getting Hot: 19 Strategies That Can Help Our Planet To Cool Down
Dr. Erlijn van Genuchten
Dr. Erlijn van Genuchten
Aug 11 2022
It’s Getting Hot: 19 Strategies That Can Help Our Planet To Cool Down